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Generalized Sequential Gaussian Simulation on
Group Size ν and Screen-Effect Approximations for

Large Field Simulations1

Roussos Dimitrakopoulos2 and Xiaochun Luo3

The modelling of spatial uncertainty in attributes of geological phenomena is frequently based on the
stochastic simulation of Gaussian random fields. This paper presents a generalization of the sequential
Gaussian simulation method founded upon the group decomposition of the posterior probability density
function of a stationary and ergodic Gaussian random field into posterior probability densities of a set
of groups of nodes of size ν. The method, which is termed “generalized sequential Gaussian simulation
on group size ν,” relies computationally on sharing the neighborhood of adjacent nodes and simulates
groups of ν nodes at a time, instead of the traditional node-by-node simulation. The new method is
computationally efficient and suitable for simulation on large grids of nodes. Results suggest that, in
terms of computing cost (time), an optimal size ν of a group is about 80% of the optimal neighborhood
used for sequential Gaussian simulation and that computation can be up to 50 times faster than the
regular sequential Gaussian method, with little loss in accuracy. The effectiveness of the method is
assessed by using a general measure of accuracy, “screen-effect approximation loss” (SEA loss),
defined herein as the mean-square difference between the simulated value posterior to the information
in the neighborhood and the simulated value posterior to all information, and shown to be determined
by the corresponding posterior variances. The results presented show that both the exponential and
the spherical models perform well and can meet the less-than 5% relative SEA loss requirement for
any grid setup using a relatively small neighborhood. The Gaussian covariance model was found to
have a relatively high relative SEA loss in most cases.
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INTRODUCTION

The modelling and assessment of spatial uncertainty in the attributes of geological
phenomena are frequently based on the stochastic simulation of Gaussian random
fields conditional to available data. Sequential conditional simulation (Alabert,
1987; Journel, 1994) is a well-known approach based on the decomposition of
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the multivariate probability density function of a stationary and ergodic random
process, Z(u), u ∈ Rn, to the product of univariate posterior distribution func-
tions (Johnson, 1987; Ripley, 1987; Rossenblatt, 1952; Rubinstein, 1981; Scheuer
and Stoller, 1962). In the simplest case, sequential simulation is as follows. Let
f (z1, z2) be a probability distribution function associated with a bivariate pro-
cess Z = {Z1, Z2} at u = {u1, u2}. Generating realization z = {z1, z2} is then
based on the product decomposition of univariate posterior probability density
functions f (z1, z2) = f (z1)f (z2|z1), or Bayes relation, where f (z2|z1) is the pos-
terior distribution of Z2, given Z1 = z1. To generate a realization z = {z1, z2} of
Z = {Z1, Z2}, a value z1 is drawn for Z1 based on f (z1); then z2 is drawn from
the posterior probability function f (z2|z1). This sequential principle remains the
same for the N -variate process, as discussed in a subsequent section. When Z(u)
is Gaussian, the resulting method is termed “sequential Gaussian simulation” or
SGS (Isaaks, 1990; Journel, 1994). SGS employs simple kriging at a node to
estimate the posterior mean and variance, with random sampling of the posterior
distribution to generate a realization at the corresponding node. SGS provides a
relatively simple, efficient, and widely used conditional simulation algorithm. It
is useful in generating relatively large simulations in the industrial environment,
where computational efficiency and effective implementation are important (e.g.,
Ravenscroft, 1994). In this context, large simulations are considered to be those
on grids with up to 108 nodes (e.g., Omre, Solna, and Tjelmeland, 1993).

The computational efficiency of a conditional simulation algorithm becomes
important, for example, when simulating spatial attributes of geological phenom-
ena represented by grids in the order of hundreds of millions of nodes and assessing
risk through multiple realizations (e.g., Godoy, 2003). To assess “computational
costs” for various conditional simulation approaches and their suitability for large
problems, the number of floating point operations (flops) required for computa-
tions can serve as a measure for comparison. Consider, for example, the simulation
of values at each of the N nodes of a grid. The number of floating point operations,
or flops, required over the grid is a function of N , denoted herein as O(N ), and
reads “in the order of N .” If C is a matrix associated with a 3D grid of N = 106,
and the linear system Cw = D, where w and D are vectors, needs to be solved,
the computational cost in the absence of any structure in C is O(N3) = O(1018)
flops, that is, a million, million, million flops (Cormen, Leiserson, and Rivest,
1990). With today’s teraflop supercomputing machines this would take days to
compute. If the computational cost was, say, O(N log N ) = O(6 × 106) flops,
computations would be executed in a fraction of a second on any megaflop PC.

Issues related to stochastic simulation methods for large problems are dis-
cussed in the technical literature, including Omre, Solna, and Tjelmeland (1993),
who present the sequential simulation of Gaussian and Gaussian intrinsic random
functions based on Markov properties of random fields. The approach leads to
Markov properties justifying the selection of few “local” data for conditioning,
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and otherwise it is similar to SGS. Dietrich and Newsam (1996) show that the
stationary random process covariance matrix C can be embedded into a larger
block circulant matrix M with square root S (i.e., M = STS) and realization Se,
where e is white noise. Their circulant embedding approach uses fast Fourier
transforms for S and generates exact realizations at a cost of O(N log N ) flops.
The computational improvement over, for example, the well-known LU decom-
position C = LTL of the covariance matrix C (Davis, 1987a,b) is substantial. LU
requires O(N3) flops and may only be marginally improved (Dowd and Saraç,
1994).

In practice, sequential Gaussian simulation, like most simulation algorithms
used in earth science and engineering problem solving, uses local neighbor-
hoods to estimate the local posterior probability density functions. This neigh-
borhood implementation substantially reduces computing cost and storage re-
quirements and is based on screening effects the closest samples have over the
data at larger distances, similarly to the screening effects in kriging (David,
1977). As discussed in the next section, the computational costs for SGS are
reduced from O(N4) when all data is used to O(Nν3

max), where νmax is the
size of the neighborhood. This is a substantial reduction in computational costs
(Luo, 1998) and it provides one of the justifications for the wide use of the
method.

Against this background, this paper suggests that computational efficiency
can be further enhanced. This improvement starts with the observation that, in the
implementation of SGS in a node-by-node sequential process, there is overlapping
of neighborhoods amongst closest nodes, as shown in Figure 1. It is rational to
consider sharing neighborhoods amongst adjacent grid nodes. This consideration
leads to the decomposition of the multivariate probability density function of Z(u),
into groups of products of univariate posterior distributions, where each group is

Figure 1. Four overlapping neighborhoods of a group of
four nodes.
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used to simultaneously generate realizations at the corresponding grid nodes. The
group decomposition of the multivariate probability density function is a general-
ization of the sequential Gaussian simulation method, in which a decomposition
with a single node in a group is identical to SGS, and a decomposition with all
nodes in one group is identical to the LU method.

The screen-effect approximation (SEA) is used in all the above implementa-
tions and the trade-off between computational efficiency and accuracy needs to be
quantified. This paper introduces a measure of the loss from SEA, or screen-effect
approximation loss (SEA loss), defined as a mean-square difference between the
simulated value posterior to the information in the neighborhood and the simulated
value posterior to all information, and found to be a function of the correspond-
ing posterior variances. SEA loss can be used to assess the optimal size of the
neighborhood for different requirements.

In the first of the following sections, the pertinent aspects of the sequential
Gaussian simulation are revisited. The proposed generalization of SGS is then
detailed, including the main computational aspects. In the following section, SEA
loss is defined, its properties are described, and loss for various covariance models
and grid characteristics is assessed. The optimal size neighborhood for various
covariance models and a brief example of the proposed generalized SGS are then
presented. The final section presents the conclusions.

SEQUENTIAL GAUSSIAN SIMULATION REVISITED

Following the geostatistical terminology, consider the stationary Gaussian
random field Z(ui), ui ∈ Rn, i = 1, . . . , N , also denoted as Zi , indexed on a dis-
crete grid DN , and a set of conditioning data dn = {z(uα), α = 1, . . . , n}. In addi-
tion, consider for convenience the set �i such that, �0 = {dn}, �i = �i−1 ∪ {Zi};
for example, �1 = {dn, Z1}, �2 = {dn, Z1, Z2}, �3 = {dn, Z1, Z2, Z3}. Follow-
ing the above notation, the sequential Gaussian simulation on DN is based on the
sampling from the N -variate distributions posterior to the data set �0 (Journel,
1994),

F (u1, . . . , uN ; z1, . . . , zN | �0) = P (Z(u1) ≤ z1, . . . , Z(uN ) ≤ zN | �0) (1)

with a density function equal to the product of the N single-variate posterior
probability density functions

f (u1, . . . , uN ; z1, . . . , zN | �0) = f (uN ; zN | �N−1) . . . f (u1; z1) | �0)

=
N∏

i=1

f (ui ; zi | �i−1) (2)
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The posterior probability density functions in Equation (2) can be seen as an
extension of Bayes relation discussed in the previous section and are given by

f (ui ; zi | �i−1) = N (E{Z(ui) | �i−1}, Var{Z(ui) | �i−1}) (3)

where N (·) denotes the Gaussian probability density function of Z(ui) with mean
E{Z(ui) | �i−1}, and variance Var {Z(ui) | �i−1} conditional to data set �i−1.
Realizations of Zi are generated from the operation

Z(ui | �i−1) = E{Z(ui) | �i−1} +
√

Var{Z(ui) | �i−1} · ei (4)

where all ei are independent, N (0, 1) distributed random numbers; and the posterior
mean and variance are given by

E{Z(ui) | �i−1} = mi + Ci�i−1 C−1
�i−1�i−1

(Z�i−1 − m�i−1 ) (5)

and

Var{Z(ui) | �i−1} = Cii − Ci�i−1 C−1
�i−1�i−1

C�i−1i (6)

where mi and Cii are the prior mean and variance of Z(ui), m�i−1 and C−1
�i−1�i−1

are the prior means and covariances of the data, respectively; vector Z�i−1 denotes
the data, and Ci�i−1 is the covariance between Z(ui) and data set �i−1.

The implementation of sequential Gaussian simulation is as follows:

1. define a random path visiting the N nodes of grid DN to be simulated;
2. at a node ui of DN , generate a value using Equation (4);
3. add the simulated value into the data set; and
4. loop and repeat Steps 2 and 3 until all N nodes are simulated.

Computationally, SGS as described above needs O((n + i − 1)3) floating
point operations for C−1

�i−1�i−1
(Steinberg, 1974), and the computing cost for

Equations (5) and (6) is O((n + i − 1)3 + (n + i − 1)2 + 2(n + i − 1)) flops. This
is in practice O((n + i − 1)3) = O((n + i)3) and the overall computing cost for
the N steps in SGS is

∑N
i=1 O((n + 1)3) = O((n + N )4).

The minimum memory allocation required (storage requirement) for the SGS
algorithm is determined by the maximum size of the matrix C−1

�i−1�i−1
, in the order

of (n + N − 1)2. This storage requirement deems the SGS algorithm as described
above to be impractical since n + N is usually in the order of hundreds of thousands
to tens of millions of nodes. In practice, the implementation of SGS is based on
the so-called “screen-effect approximation” discussed next.



572 Dimitrakopoulos and Luo

SGS With a Screen-Effect Approximation

The implementation of SGS is based on fixed-size neighborhoods where the
posterior probability density function at a node posterior to all data is approximated
from the data within the neighborhood closest to this node. SEA on Equation (2)
is then

f (u1, . . . , uN ; z1, . . . , zN | �0) ≈
N∏

i=1

f (ui ; zi | λi−1) (7)

where λi−1 is the data set in the neighborhood of ui and λi−1 ⊆ �i−1, and real-
izations of Zi are generated from

Z(ui | �i−1) ≈ E{Z(ui) | λi−1} +
√

Var{Z(ui) | λi−1} · ei (8)

where all ei are independent, N (0, 1) distributed random numbers; and the posterior
mean and variance are now given by

E{Z(ui) | λi−1} = mi + Ciλi−1 C−1
λi−1λi−1

(
Zλi−1 − mλi−1

)
(8a)

and

Var{Z(ui) | λi−1} = Cii − Ciλi−1 C−1
λi−1λi−1

Cλi−1i (8b)

where mi and Cii are the prior mean and variance of Z(ui); mλi−1 and C−1
λi−1λi−1

are
the prior means and inverse covariances of the data λi−1 in the neighborhood of
ui , respectively; vector Zλi−1 denotes the data and Ciλi−1 is the covariance between
Z(ui) and data set λi−1.

Sequential Gaussian simulation with SEA is then based on Equation (8)
instead of (4). By defining an upper bound of the neighborhood size, say νmax,
the computing cost is O(Nν3

max) flops instead of O((n + N )4). Note that νmax is
usually in the order of 10–30 nodes, i.e., small compared to n, the total number of
data. Similarly, the storage requirements are also drastically reduced compared to
SGS based on (4).

A GENERALIZATION OF THE SEQUENTIAL GAUSSIAN
SIMULATION

In practice, DN is usually large and dense compared to the available data,
indicating that the neighborhoods of closest nodes are overlapping as shown in
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Figure 1. It is natural to consider generating realizations of Zi simultaneously and
in groups of close nodes, instead of the node-by-node sequential simulation process
in SGS. This sequential simulation of groups of nodes takes advantage of the
neighborhood sharing for the closest nodes and leads to computational efficiencies.
By analogy to the current SGS method, which decomposes the posterior probability
density into N posterior probability densities for the N nodes to be simulated, the
method of decomposition in groups is a generalization of SGS and is as follows.

Partition DNj
into k groups of νj , j = 1, . . . , k, clustered nodes for each k

group, and set Nj = ∑j

i=1 νi, j = 1, . . . , k,N = Nk . Then, the decomposition of
the posterior probability density in Equation (2) into posterior probability densities
for k groups becomes

f (u1, . . . , uN ; z1, . . . , zN | �0) =
N1∏
i=1

f (ui ; zi | �i−1) · · ·
NK∏

i=Nk−1+1

f (ui ; zi | �i−1)

=
k∏

j=1




Nj∏
i=Nj−1+1

f (ui ; zi | �i−1)


 (9)

Considering SEA, similarly to the implementation of SGS in the previous section,
we have

f (u1, . . . , uN ; z1, . . . , zN | �0) ≈
k∏

j=1




Nj∏
i=Nj−1+1

f (ui ; zi | λi−1)


 (10)

The posterior mean vector and posterior covariance matrix of the j th group DNj
,

Nj∏
i=Nj−1+1

f (ui ; zi | λi−1), j = 1, . . . , k,

are

E
{
Z

(
uNj

i

∣∣λi−1
} = mj + Cjλj−1 C−1

λj−1λj−1

(
Zλj−1 − mλj−1

)
(11)

and

Cov
{
Z

(
uNj

i

)∣∣λi−1
} = Cjj ·λj−1 = Cjj − Cjλj−1 C−1

λj−1λj−1
Cλj−1j (12)



574 Dimitrakopoulos and Luo

where vector mj and mλj−1 denote the prior means of group Z(uNj

i ) and of the set
of data in λi−1, respectively; vector Zλj−1 denotes the data in the neighborhood;
C−1

λj−1λj−1
denotes the inverse of the prior covariance matrix of λi−1; Cjj denotes the

covariance matrix of Z(uNj

i ); and CT
jλj−1

= Cjλj−1 denotes the prior covariances

between Z(uNj

i ) and λi−1.
Consider the Cholesky decomposition Cjj ·λj−1 = LLT, where L is the lower

triangular matrix of Cjj ·λj−1 , then the simulated values of the j th group can be
generated from the operation

Z
((

uNj

i

) | λi−1
) = mj + Cjλj−1 C−1

λj−1λj−1

(
Zλj−1 − mλj−1

) + Lej (13)

where the vector of independent random numbers ej ∼ N (0, I).
If the number of nodes in each group is identical, say ν and N = kν, the

above method can be seen as a generalization of SGS, termed “generalized SGS
on group size ν” or GSGS-ν. From Equation (13) it follows that when ν = 1,
GSGS-1 is identical to the sequential Gaussian simulation. When ν = N then,
GSGS-N is identical to the LU decomposition method of Davis (1987a).

The implementation of the proposed generalized GSGS-ν algorithm on a
group of size ν proceeds as follows:

1. define a path visiting each k group of the grid DN and a path visiting the
nodes in each group;

2. find a neighborhood for the current group;
3. calculate the posterior mean vector and the posterior covariance matrix of

the current group from Equations (11) and (12);
4. generate the simulated values of the current group from Equation (13);
5. add the simulated values of the current group into the data set; and
6. loop until all groups are simulated.

An advantage of the proposed algorithm is its substantially reduced comput-
ing cost. Considering νmax as the maximum neighborhood size used in SGS, as in
the previous section, the overall computing cost (time) for a discrete grid DN of
N nodes is

Tν(N ) ≈ O(k(νmax)3 + kν3) = O

(
N

ν

(
ν3

max + ν3
))

(14)

Equation (14) shows that

(i) the computing cost for DN decreases as the size of the group ν is increasing
from 1 to νmax/21/3 or approximately 80% of νmax;
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(ii) computing cost reaches a minimum when ν ≈ 0.8νmax and, using
Equation (14), it gives

T0.8νmax (N ) ≈ 1.9N (νmax)2 ≈ 1.9

νmax
T1(N ) (15)

where T1(N ) = O(Nν3
max);

(iii) computing cost is increasing when ν is increasing from 80% of νmax to N ;
(iv) computing cost reaches the maximum when ν = N indicating k = 1 and

νmax = ν,

TN (N ) ≈ O(N3)

To elucidate further, consider an example where the maximum size νmax is set to
100 and assume, without loss of generality, that the sizes of neighborhoods selected
during the sequential process reach νmax in most cases, then the computing cost is

T0.8νmax (N ) = T80(N ) ≈ 1.9N1002 ≈ T1(N )/50

From the above section, it can be seen that the computing cost for GSGS-1 is
identical to that of SGS while the computing cost of GSGS-N is that of the
LU decomposition. This is expected considering the equivalence of the methods.
GSGS-1, or SGS, is relatively less efficient, and the computationally optimal
approach is a GSGS-ν where ν is 80% of νmax. Figure 2 illustrates the effects
of the group size ν and the neighborhood size νmax on the ratio of flops between

Figure 2. Ratio of flops between GSGS-ν and SGS versus the group size ν for various neighbor-
hood sizes νmax.
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GSGS-ν and SGS. The figure shows an abrupt decrease of flops for smaller group
sizes due to computational gains, a relatively flat region around the minimum that
suggests flexibility in selecting group sizes, and the slower rate of increase of
computational costs as the group size increases after reaching a minimum.

THE SCREEN-EFFECT APPROXIMATION LOSS

Equation (15) shows that the computing cost of GSGS-ν mainly depends on
the size of the neighborhood: the larger the size, the lower the computing cost,
up to a given size. On the other hand, the larger size results in a larger difference
between the simulated value posterior to the information in the neighborhood and
the “ideal” value posterior to all information. This difference and the corresponding
ability to balance precision requirements with computing cost raises the following
questions: (i) how can the difference be measured; (ii) can the GSGS-ν match a
given difference requirement; and (iii) what is the optimal size of the neighborhood
under a given difference requirement?

This section addresses these questions, starting with the following definition
of SEA loss.

The SEA loss at a node ui can be defined as the mean-square difference

ρ{Z(ui) | λi−1,�i−1} = 1

2
E

{
[Z(ui | λi−1) − Z(ui | �i−1)]2

}
(16)

where ρ{·} denotes the SEA loss, Z(ui | λi−1) and Z(ui | �i−1) denote Z(ui)
posterior to the data in the sets λi−1 and �i−1, respectively. Recall that λi−1 ⊆
�i−1.

From Equation (16) SEA loss is

ρ{Z(ui) | λi−1,�i−1} = 1

2
E{[Z(ui | λi−1) − Z(ui | �i−1)]2}

= 1

2
E{[E{Z(ui) | λi−1} +

√
Var{Z(ui) | λi−1} · ei

−E{Z(ui) | �i−1} −
√

Var{Z(ui) | �i−1} · ei]
2}

= 1

2
E{[E{Z(ui) | λi−1} − E{Z(ui) | �i−1}]2

+1

2
[
√

Var{Z(ui) | λi−1} −
√

Var{Z(ui) | �i−1}]2}
Since

E{[E{Z(ui) | λi−1} − E{Z(ui) | �i−1}]2}
= E{[mi + Ciλi−1 C−1

λi−1λi−1
(Zλi−1 − mλi−1 ) − mi

−Ci�i−1 C−1
�i−1�i−1

(Z�i−1 − m�i−1 )]2}
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= Ci�i−1 C−1
�i−1�i−1

C�i−1i + Ciλi−1 C−1
λi−1λi−1

Cλi−1i

−2Cλi−1�i−1 C−1
�i−1�i−1

C�i−1λi−1 C−1
λi−1λi−1

Cλi−1i

= Ciλi−1 C−1
λi−1λi−1

Cλi−1i − Ci�i−1 C−1
�i−1�i−1

C�i−1i

+2
(
Ci�i−1 C−1

�i−1�i−1
C�i−1i − Cλi−1�i−1 C−1

�i−1�i−1
C�i−1λi−1 C−1

λi−1λi−1
Cλi−1i

)
= Var{Z(ui) | λi−1} − Var{Z(ui) | �i−1} + 2

(
Ci�i−1 C−1

�i−1�i−1
C�i−1i·λi−1

)

where C�i−1i·λi−1 denotes a vector of posterior covariances. Note that λi−1 ⊆ �i−1,
and according to Property 1 of posterior covariances shown in the Appendix,
C�i−1i·λi−1 = 0. This leads to

E{[E{Z(ui)|λi−1} − E{Z(ui)|�i−1}]2} = Var{Z(ui)|λi−1} − Var{Z(ui)|�i−1}
(17)

and

ρ{Z(ui) | λi−1,�i−1} = 1

2
[Var{Z(ui) | λi−1} − Var{Z(ui) | �i−1}]

+([√
Var{Z(ui) | λi−1} −

√
Var{Z(ui) | �i−1}

]2]
= Var{Z(ui) | λi−1}

× (
1.0 −

√
Var{Z(ui) | �i−1}/Var{Z(ui) | λi−1}

)
(18)

Equation (18) indicates that SEA loss is determined from the two posterior
variances: Var{Z(ui) | λi−1} and Var{Z(ui) | �i−1}. Properties of SEA loss are
detailed in Luo (1998), where SEA loss is shown to be positive, monotonically
decreasing with regard to increasing data in the neighborhood, monotonically in-
creasing with regard to increasing overall information and bounded between 0 and
Var{Z(ui) | �i−1}.

It is practical to consider the relative SEA loss or RSEA loss, defined as

ρR{Z(ui) | λi−1,�i−1} = ρ{Z(ui) | λi−1,�i−1}/Var{Z(ui) | λi−1}
= 1.0 −

√
Var{Z(ui) | �i−1}/Var{Z(ui) | λi−1} (19)

The RSEA loss is valued in the interval [0, 1]. A decreasing RSEA loss reflects a
decreasing difference between two posterior variances. When the posterior vari-
ances become identical, the RSEA loss reaches zero. An advantage of the RSEA
loss is that it is only affected by the grid size used, the range and type of the
covariance model. The assessment, using RSEA loss, of the effects of different
grid sizes and covariance models is examined next.
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Assessment of the Relative SEA Loss

This section deals with the assessment of the upper bound of the RSEA loss
for a given covariance model and grid ratio l/a, where a is the range and l is the
lag (size) of the grid. Two common covariance models are first discussed in detail:
the spherical and exponential models; the Gaussian covariance model is visited at
the end of this section and provides a counterexample to the previous two.

For a given grid ratio, the RSEA loss reaches its upper bound when
Var{Z(ui) | �i−1} reaches its lower bound and Var{Z(ui) | λi−1} reaches its upper
bound simultaneously. The lower bound of Var{Z(ui) | �i−1} is given by

min
�i−1

Var{Z(ui) | �i−1} = lim
�i−1→∞

Var{Z(ui) | �i−1} = Var{Z(ui) | (∞)}

and the upper bound of Var{Z(ui) | λi−1}

max
λi−1

Var{Z(ui) | λi−1} = lim
λi−1→1

Var{Z(ui) | λi−1} = Var{Z(ui) | (1)}

where Var{Z(ui) | (∞)} denotes the variance posterior to the information on the
whole grid and Var{Z(ui) | (1)} denotes the variance posterior to the closest datum.
Then, the RSEA loss is

ρR{Z(ui) | λi−1,�i−1} ≤ ρ
upp
R = 1.0 −

√
Var{Z(ui) | (∞)}/Var{Z(ui) | (1)}

Var{Z(ui) | (∞)} convergences very fast for a given grid ratio,

Var{Z(ui) | (∞)} ≈ Var{Z(ui) | λi−1}

where λi−1 is a neighborhood with a considerably small size (e.g., 30). This can be
demonstrated from the following configurations. Var{Z(ui) | λi−1} is calculated
by first considering the 8 closest locations of the grid, shown in Figure 3(a);
then 24 locations, shown in Figure 3(b); then 48 locations, shown in Figure 3(c),
and so on. The results of the spherical and exponential covariance models are
shown in Figures 4 and 5, respectively, both indicating Var{Z(ui) | (∞)} can be
approximated sufficiently by considering only the 24 closest locations of the grid

Var{Z(ui) | (∞)} ≈ Var{Z(ui) | (24)}

On the other hand, Var{Z(ui) | (1)} is given by

Var{Z(ui) | (1)} = C(0) − C(h)2/C(0)
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Figure 3. Four neighborhoods with regular grid: (a) 8, (b) 24, (c) 48, and (d) 80.

where C(h) is the covariance and h denotes the distance of the closest datum.
Figures 6 and 7 show the upper bounds of the exponential and spherical models,
respectively, with the grid ratio changing from 0.001 to 0.5. The results indicate
that (i) the upper bound of the RSEA loss is decreasing when the grid ratio is
increasing and (ii) the upper bound is between 0.0 and 0.42.

Optimal Size of Neighborhood Using RSEA Loss

The RSEA loss in both the exponential model and the spherical model is,
in practice, much smaller than its upper bound, and this makes the GSGS-ν
effective. To show practical variations of the RSEA loss, the data configuration
and the neighborhood are designed as follows. Randomly pick 120 nodes from a
21 × 21 grid around the node to be simulated. These nodes form the configuration
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Figure 4. The convergence of the posterior variance of the spherical
model, for the grid ratio of 0.1.

of the data, thus the simulated node ratio = simulated nodes
all nodes ≈ 1

4 . Divide the area into
four subareas, select the closest node in each subarea to construct a 4-location
neighborhood, and calculate the RSEA loss. Then, choose the two closest nodes
in each sub-area to construct an 8-location neighborhood, and calculate the RSEA
loss. Keep extending the neighborhood to assess the variation of the RSEA loss.
This process can be repeated several times to generate a reliable evaluation for the
RSEA loss.

Figure 8 shows the results of the RSEA loss for the exponential model for
grid ratio l/a = 0.01, 0.05, and 0.1, with 50 repetitions. On the basis of these

Figure 5. The convergence of the posterior variance of the
exponential model, for the grid ratio of 0.1.
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Figure 6. The upper bound of the RSEA loss of the expo-
nential model with respect to different grid ratios and relative
closest distances (=distance/grid ratio).
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Figure 7. The upper bound of the RSEA loss of the spherical
model with respect to different grid ratios and relative closest
distances (=distance/grid ratio).
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Figure 8. The RSEA loss of the exponential model for grid ra-
tios of 0.01, 0.05, and 0.10. There are 120 “real” data randomly
distributed in a grid of 21 × 21.
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Table 1. Optimal Size of the Neighborhood for the Exponential Model

Grid ratio (l/a) Optimal size (RSEA loss <5%) Optimal size (RSEA loss <1%)

≤0.01 2 × 4 5 × 4
>0.01 and ≤0.1 2 × 4 4 × 4
>0.1 1 × 4 3 × 4

results, the optimal size of the neighborhood of the exponential model with two
RSEA loss requirements, less than 5% and less than 1%, is shown in Table 1.
In general, the optimal size decreases when the grid ratio increases. When the
grid ratio is larger than 0.1, and the RSEA loss requirement is less than 5%,
it is enough to pick only one datum in each sub-area to construct a 4-location
neighborhood.

The RSEA loss does not vary monotonically for the spherical model. This
is demonstrated in Figures 9, 10, and 11. It is interesting that the RSEA loss
is small and does not vary much when the grid ratio is no larger than 0.05.
When the grid ratio is between 0.07 and 0.20, the RSEA loss increases con-
siderably, and then it decreases rapidly when the grid ratio is over 0.25. The
optimal size of the neighborhood with respect to different grid ratios is given in
Table 2.

Both the exponential model and the spherical model show the property of
the screen effect in the sense that a relatively small neighborhood can satisfy a
less-than 5% RSEA loss requirement. This suggests the excellent performance of
the GSGS-ν implementation.

The performance of the GSGS-ν for the exponential and spherical models
does not imply that it is applicable for any covariance model. A counterexample
is the Gaussian model. Figure 12 shows the RSEA loss of the Gaussian model
for the grid ratios of 0.15, 0.20, and 0.25, indicating that the RSEA loss increases
when the grid ratio decreases. When the grid ratio is less than 0.25, the RSEA loss
is relatively high (much greater than 5%). This means that the GSGS-ν is much
less effective for the Gaussian model in most applications.

The RSEA loss provides an assessment of the neighborhood size as a function
of the variogram and the grid size. In practical terms, once the grid size is deter-
mined, a group size can be selected that minimizes computational costs without
any substantial loss in accuracy.

CONCLUSIONS

The generalization of the sequential Gaussian simulation method intro-
duced in this paper is termed the “generalized sequential Gaussian simulation on
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Figure 9. The RSEA loss of the spherical model for grid ratios of
0.01, 0.05, and 0.07. There are 120 “real” data randomly distributed
in a grid of 21 × 21.
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Figure 10. The RSEA loss of the spherical model for grid ratios of
0.10, 0.12, and 0.15. There are 120 “real” data randomly distributed
in a grid of 21 × 21.



Generalized Sequential Gaussian Simulation 587

Figure 11. The RSEA loss of the spherical model for grid ratios of
0.20, 0.25, and 0.30. There are 120 “real” data randomly distributed
in a grid of 21 × 21.
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Table 2. Optimal Size of the Neighborhood for the Spherical Model

Grid ratio (l/a) Optimal size (RSEA loss <5%) Optimal size (RSEA loss <1%)

≤0.07 2 × 4 6 × 4
>0.07 and ≤0.17 5 × 4 Not available
>0.17 and ≤0.25 5 × 4 9 × 4
>0.25 2 × 4 5 × 4

group size ν” (GSGS-ν). The generalization takes advantage of the neighborhood
sharing of adjacent nodes, simulating groups of nodes at a time, instead of the node-
by-node simulation of SGS. This leads to sequential simulation implementations
that are computationally efficient. Although implementations of GSGS are not
presently available in the public domain, the method is relatively straightforward
to implement.

GSGS-ν is based on the group decomposition of the posterior probability
density function of a stationary Gaussian random field into posterior probability
densities for a set of groups. The sequential Gaussian and LU decomposition
simulation methods can be seen as the end members of GSGS-ν. When ν is 1, the
method is identical to SGS. When ν includes all the nodes to be simulated, the
method is identical to LU decomposition.

The results presented suggest that, in terms of computing cost, the optimal
size ν of a group is about 80% of the optimal neighborhood used for SGS. The
computational efficiencies are substantial.

The effectiveness of the GSGS-ν depends on the performance of SEA, char-
acterized by the corresponding SEA loss. The SEA loss is a general measure
of accuracy, defined as a mean-square difference between the simulated value
posterior to the information in the neighborhood and the simulated value pos-
terior to all information, and determined by the corresponding posterior vari-
ances. The relative SEA loss is a practical alternative as it is affected by the
grid size used, the range and type of the covariance model. The results pre-
sented herein show that both the exponential and spherical covariance models
can satisfy a less-than 5% RSEA loss requirement for any grid setup, using
a relatively small neighborhood. However, the Gaussian covariance model was
found to have a relatively high RSEA loss in most cases. It is suggested that,
in most situations, the increase in speed in GSGS-ν is not at the expense of
accuracy.

SEA loss is a general measure of accuracy, which may be used in any simu-
lation method. Using this tool, the optimal size of a neighborhood that will satisfy
an acceptable SEA loss for given conditions can be assessed before implementing
the actual simulation.
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Figure 12. The RSEA loss of the Gaussian model for grid ratios of
0.15, 0.20, and 0.25. There are 120 “real” data randomly distributed
in a grid of 21 × 21.



590 Dimitrakopoulos and Luo

ACKNOWLEDGMENTS

Funding was provided by the National Science and Engineering Research
Council of Canada Grant No. OGP0105803 to R. Dimitrakopoulos. Thanks are
to C. Dietrich, A. Boucher, and the reviewers of Mathematical Geology for their
constructive comments and suggestions.

REFERENCES

Alabert, F., 1987, Stochastic imaging of spatial distributions using hard and soft information: Unpub-
lished MSc thesis, Stanford University, Stanford, CA, 197 p.

Berger, J. O., 1985, Statistical decision theory and Bayesian analysis: Springer-Verlag, New York,
617 p.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L., 1990, Introduction to algorithms: The MIT Press,
Cambridge, MA, 1028 p.

David, M., 1977, Geostatistical ore reserve estimation: Elsevier, Amsterdam, 364 p.
Davis, M. W., 1987a, Production of conditional simulations via the LU triangular decomposition of

the covariance matrix: Math. Geol., v. 19, no. 2, p. 91–98.
Davis, M. W., 1987b, Generating large stochastic simulation—The matrix polynomial approximation

method: Math. Geol., v. 19, no. 2, p. 99–107.
Dietrich, C. R., and Newsam, G. N., 1996, Fast and exact method for multidimensional Gaussian

stochastic simulations: Extension to conditional simulations: Water Resour. Res., v. 32, no. 6,
p. 1643–1652.
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APPENDIX: SOME PROPERTIES OF POSTERIOR COVARIANCES

The posterior covariance between Z(ui) and Z(uj ), given (k), is

Cij ·k = Cov[Z(ui), Z(uj ) | (k)] = Cij − CikC−1
kk Ckj

The posterior covariance characterizes the correction of the prior covariance pos-
terior to information (k) (e.g., Berger, 1985). For a positive definite covariance
matrix the posterior covariance has the following properties.

Property 1. The covariance of Z(ui) and Z(uj ) posterior to (k), Cij.k =
Cov[Z(ui), Z(uj ) | (k)], is equal to zero if (i) Z(ui) has no correlation with Z(uj )
and the information (k); or (ii) Z(ui) ⊆ (k) or Z(uj ) ⊆ (k).

Proof: (i) This is obvious from Equation (16):

Cij ·k = Cij − CikC−1
kk Ckj = 0 − 0C−1

kk Ckj = 0

(ii) Assume Z(ui) ⊆ (n), then vector Cik = [Cov(Z(ui), Z(u1)), . . . , Cov(Z(ui),
Z(ui)), . . . , Cov(Z(ui), Z(uk))] is but a row of the covariance matrix of (k), Ck ,
which entails

CikC−1
kk = (0, . . . , 0, 1, 0 . . . , 0)

This is a row with all zeros except the ith element being one. Consequently,

CikC−1
kk Ckj = Cij

Therefore the posterior covariance

Cij ·k = Cij − CikC−1
kk Ckj = 0

Property 2. The variance of Z(ui) posterior to (p) is less than the variance of
Z(ui) posterior to (q) if (p) ⊆ (q).


